If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9p^2-56+12=0
We add all the numbers together, and all the variables
9p^2-44=0
a = 9; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·9·(-44)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{11}}{2*9}=\frac{0-12\sqrt{11}}{18} =-\frac{12\sqrt{11}}{18} =-\frac{2\sqrt{11}}{3} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{11}}{2*9}=\frac{0+12\sqrt{11}}{18} =\frac{12\sqrt{11}}{18} =\frac{2\sqrt{11}}{3} $
| 3(2x+5)+2=17 | | 0.6^x=0.1 | | 41=21x | | -3x^2=2(x-5)-4=0 | | x-5688=15 | | -3x^2=(x-5)-4=0 | | 8x+1=-0 | | 2y=1+72y=1-72y=6y=3 | | 4m-5(3m-7)=84 | | –7+2d=3d | | 7k=6+9k | | 5t+6=5 | | 196-n2=0 | | 14.5x-10=2x-1 | | 5t+6+5=10 | | |5t+6|+5=10 | | -a/4+1/2=3a/5+1/2 | | 32=2n-9 | | -5y+17=17 | | 7x+21=10x-13 | | 35y+18=4(10y−7)−5y+46 | | -x/4=12.3 | | -4.8(s-7)=0.33s+2.82 | | 3(-1.5s+5)=-2s+4 | | -40+8v=96 | | 2/3=1/3(q+6) | | 2(3n+5)=8(7n+5)+1 | | 0.05x=340 | | 4(z+13)^2-20=980 | | -2(4t-3)+4t=7t-9 | | 2y-1=61 | | 4y+61=180 |